OBSERVATIONS & RECOMMENDATIONS

After reviewing data collected from **Swanzey Lake**, **Swanzey**, the program coordinators have made the following observations and recommendations.

We congratulate your group on sampling twice this year! However, we encourage your group to conduct more sampling events in the future. Typically, we recommend that monitoring groups sample three times per summer (once in **June**, **July**, and **August**). We understand that the number of sampling events you decide to conduct per summer will depend upon volunteer availability, and your group's goals and funding availability. However, with a limited amount of data it is difficult to determine accurate and representative water quality trends. Since weather patterns and activity in the watershed can change throughout the summer, from year to year, and even from hour to hour during a rain event, it is a good idea to sample the lake at least once per month during the summer.

If you are having difficulty finding volunteers to help sample or to travel to one of the laboratories, please call the VLAP Coordinator and DES will help you work out an arrangement.

FIGURE INTERPRETATION

CHLOROPHYLL-A

Figure 1 and Table 1: Figure 1 in Appendix A shows the historical and current year chlorophyll-a concentration in the water column. Table 1 in Appendix B lists the maximum, minimum, and mean concentration for each sampling year that the lake has been monitored through VLAP.

Chlorophyll-a, a pigment found in plants, is an indicator of the algal abundance. Algae (also known as phytoplankton) are typically microscopic, chlorophyll producing plants that are naturally occurring in lake ecosystems. The chlorophyll-a concentration measured in the water gives biologists an estimation of the algal concentration or lake productivity. **The median summer**

chlorophyll-a concentration for New Hampshire's lakes and ponds is 4.58 mg/m^3 .

The current year data (the top graph) show that the chlorophyll-a concentration *increased slightly* from **July** to **August**.

The historical data (the bottom graph) show that the **2009** chlorophyll-a mean is *less than* the state and similar lake medians. For more information on the similar lake median, refer to Appendix F.

Overall, the statistical analysis of the historical data (the bottom graph) shows that the mean annual chlorophyll-a concentration has **not significantly changed** since monitoring began. Specifically, the mean annual chlorophyll-a concentration has **fluctuated between approximately 2.35 and 6.02 mg/m³**, but has **not continually increased or decreased** since **1990**. Please refer to Appendix E for a detailed statistical analysis explanation and data print-out.

While algae are naturally present in all lakes and ponds, an excessive or increasing amount of any type is not welcomed. In freshwater lakes and ponds, phosphorus is the nutrient that algae typically depend upon for growth in New Hampshire lakes. Algal concentrations may increase as nonpoint sources of phosphorus from the watershed increase, or as in-lake phosphorus sources increase. Therefore, it is extremely important for volunteer monitors to continually educate all watershed residents about management practices that can be implemented to minimize phosphorus loading to surface waters.

TRANSPARENCY

Figure 2 and Tables 3a and 3b: Figure 2 in Appendix A shows the historical and current year data for transparency with and without the use of a viewscope. Table 3a in Appendix B lists the maximum, minimum and mean transparency data without the use of a viewscope and Table 3b lists the maximum, minimum and mean transparency data with the use of a viewscope for each year that the lake has been monitored through VLAP.

Volunteer monitors use the Secchi disk, a 20 cm disk with alternating black and white quadrants, to measure how far a person can see into the water. Transparency, a measure of water clarity, can be affected by the amount of algae and sediment in the water, as well as the natural lake color of the water. **The median summer transparency for New Hampshire's lakes and ponds is 3.2 meters.**

The current year data (the top graph) show that the non-viewscope inlake transparency *decreased slightly* from **July** to **August**.

It is important to note that as the chlorophyll concentration *increased* at the deep spot as the summer progressed, the transparency *decreased*. We typically expect this *inverse* relationship in lakes. As the amount of algal cells in the water increases, the depth to which one can see into the water column typically decreases, and vice versa.

The historical data (the bottom graph) show that the **2009** mean non-viewscope transparency is *greater than* the state median and is *slightly greater than* the similar lake median. Please refer to Appendix F for more information about the similar lake median.

Overall, the statistical analysis of the historical data (the bottom graph) shows that the mean annual in-lake non-viewscope transparency has **not significantly changed** (either *increased* or *decreased*) since monitoring began. Specifically, the mean annual inlake transparency has remained **relatively stable**, **ranging between approximately 3.35 and 5.37 meters** since **1990**. Please refer to Appendix E for the statistical analysis explanation and data print-out.

Typically, high intensity rainfall causes sediment-laden stormwater runoff to flow into surface waters, thus increasing turbidity and decreasing clarity. Efforts to stabilize stream banks, lake and pond shorelines, disturbed soils within the watershed, and especially dirt roads located immediately adjacent to the edge of tributaries and the lake or pond should continue on an annual basis. Guides to best management practices that can be implemented to reduce, and possibly even eliminate, nonpoint source pollutants, are available from DES upon request.

TOTAL PHOSPHORUS

Figure 3 and Table 8: The graphs in Figure 3 in Appendix A show the amount of epilimnetic (upper layer) phosphorus and hypolimnetic (lower layer) phosphorus; the inset graphs show current year data. Table 8 in Appendix B lists the annual maximum, minimum, and median concentration for each deep spot layer and each tributary since the lake has been sampled through VLAP.

Phosphorus is typically the limiting nutrient for vascular aquatic plant and algae growth in New Hampshire's lakes and ponds. Excessive phosphorus in a lake or pond can lead to increased plant and algal growth over time. The median summer total phosphorus concentration in the epilimnion (upper layer) of New Hampshire's

lakes and ponds is 12 ug/L. The median summer phosphorus concentration in the hypolimnion (lower layer) is 14 ug/L.

The current year data for the epilimnion (the top inset graph) show that the phosphorus concentration *decreased slightly* from **July** to **August**.

The historical data show that the **2009** mean epilimnetic phosphorus concentration is **slightly less than** the state median and is **slightly greater than** the similar lake median. Refer to Appendix F for more information about the similar lake median.

The current year data for the hypolimnion (the bottom inset graph) show that the phosphorus concentration *increased* from **July** to **August**.

The hypolimnetic (lower layer) turbidity sample was **slightly elevated** on the **July and August** sampling events (**1.42 and 2.38 NTUs**). This suggests that the lake bottom may have been disturbed by the anchor or by the Kemmerer Bottle while sampling and/or that the lake bottom is covered by an easily disturbed thick organic layer of sediment. When the lake bottom is disturbed, phosphorus rich sediment is released into the water column. When collecting the hypolimnion sample, make sure that there is no sediment in the Kemmerer Bottle before filling the sample bottles.

The historical data show that the **2009** mean hypolimnetic phosphorus concentration is *greater than* the state and similar lake medians. Please refer to Appendix F for more information about the similar lake median.

Overall, the statistical analysis of the historical data shows that the epilimnetic (upper layer) phosphorus concentration has **not significantly changed** (either *increased* or *decreased*) since monitoring began. Specifically, the mean annual epilimnetic phosphorus concentration has remained **relatively stable**, **ranging between approximately 5 and 12 ug/L** since **1990**. Please refer to Appendix E for the statistical analysis explanation and data print-out.

Overall, the statistical analysis of the historical data shows that the hypolimnetic (lower layer) phosphorus concentration has **not significantly changed** since monitoring began. Specifically, the mean annual hypolimnetic phosphorus concentration has **fluctuated between approximately 7 and 24 ug/L** but has **not continually increased or decreased** since **1990**.

One of the most important approaches to reducing phosphorus loading to a waterbody is to continually educate watershed residents about the watershed sources of phosphorus and how excessive phosphorus loading can negatively impact the ecology and the recreational, economical, and ecological value of lakes and ponds.

TABLE INTERPRETATION

> Table 2: Phytoplankton

Table 2 in Appendix B lists the current and historical phytoplankton and/or cyanobacteria observed in the lake. Specifically, this table lists the three most dominant phytoplankton and/or cyanobacteria observed in the sample and their relative abundance in the sample.

The dominant phytoplankton and/or cyanobacteria observed in the **July** sample were **Dinobryon** (Golden-Brown), **Ceratium** (Dinoflagellate), and **Asterionella** (Diatom).

Phytoplankton populations undergo a natural succession during the growing season. Please refer to the "Biological Monitoring Parameters" section of this report for a more detailed explanation regarding seasonal plankton succession. Diatoms and golden-brown algae populations are typical in New Hampshire's less productive lakes and ponds.

> Table 4: pH

Table 4 in Appendix B presents the in-lake and tributary current year and historical pH data.

pH is measured on a logarithmic scale of 0 (acidic) to 14 (basic). pH is important to the survival and reproduction of fish and other aquatic life. A pH below 6.0 typically limits the growth and reproduction of fish. A pH between 6.0 and 7.0 is ideal for fish. The median pH value for the epilimnion (upper layer) in New Hampshire's lakes and ponds is **6.6**, which indicates that the state surface waters are slightly acidic. For a more detailed explanation regarding pH, please refer to the "Chemical Monitoring Parameters" section of this report.

The mean pH at the deep spot this year ranged from **6.16** in the hypolimnion to **6.60** in the epilimnion, which means that the water is **slightly acidic**.

It is important to point out that the hypolimnetic (lower layer) pH was *lower (more acidic)* than in the epilimnion (upper layer). This

increase in acidity near the lake bottom is likely due to the decomposition of organic matter and the release of acidic by-products into the water column.

Due to the state's abundance of granite bedrock in the state and acid deposition received from snowmelt, rainfall, and atmospheric particulates, there is little that can be feasibly done to effectively increase lake pH.

> Table 5: Acid Neutralizing Capacity

Table 5 in Appendix B presents the current year and historical epilimnetic ANC for each year the lake has been monitored through VLAP.

Buffering capacity (ANC) describes the ability of a solution to resist changes in pH by neutralizing the acidic input. The median ANC value for New Hampshire's lakes and ponds is **4.8 mg/L**, which indicates that many lakes and ponds in the state are at least "moderately vulnerable" to acidic inputs. For a more detailed explanation about ANC, please refer to the "Chemical Monitoring Parameters" section of this report.

The mean acid neutralizing capacity (ANC) of the epilimnion (upper layer) was **6.8 mg/L**, which is **greater than** the state median. In addition, this indicates that the lake is **moderately vulnerable** to acidic inputs.

> Table 6: Conductivity

Table 6 in Appendix B presents the current and historical conductivity values for tributaries and in-lake data. Conductivity is the numerical expression of the ability of water to carry an electric current, which is determined by the number of negatively charged ions from metals, salts, and minerals in the water column. The median conductivity value for New Hampshire's lakes and ponds is **40.0 uMhos/cm**. For a more detailed explanation, please refer to the "Chemical Monitoring Parameters" section of this report.

The mean annual epilimnetic conductivity at the deep spot this year was **46.2 uMhos/cm**, which is **slightly greater than** the state median.

The conductivity has *increased slightly* in the **lake** since monitoring began. In addition, the in-lake conductivity is *slightly greater than* the state median. Typically, increasing conductivity indicates the influence of pollutant sources associated with human activities.

These sources include failed or marginally functioning septic systems, agricultural runoff, stormwater runoff, and road runoff which contains road salt during the spring snow-melt. New development in the watershed can alter runoff patterns and expose new soil and bedrock areas, which could also contribute to increasing conductivity. In addition, natural sources, such as iron and manganese deposits in bedrock, can influence conductivity.

We recommend that your monitoring group conduct stream surveys and rain event sampling along tributaries with *elevated* conductivity to help identify the sources.

For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at http://www.des.nh.gov/organization/divisions/water/wmb/vlap/categories/publications.htm, or contact the VLAP Coordinator.

It is possible that de-icing materials applied to nearby roadways during the winter months may be influencing the conductivity in the lake. In New Hampshire, the most commonly used de-icing material is salt (sodium chloride).

A limited amount of chloride sampling was conducted during **2009**. Please refer to the discussion of **Table 13** for more information.

Therefore, we recommend that the **epilimnion** (upper layer) and **tributaries** be sampled for chloride next year. This additional sampling may help us identify what areas of the watershed are contributing to the increasing in-lake conductivity.

Please note that the DES Limnology Center in Concord is able to conduct chloride analyses, free of charge. As a reminder, it is best to conduct chloride sampling in the spring as the snow is melting and during rain events.

> Table 8: Total Phosphorus

Table 8 in Appendix B presents the current year and historical total phosphorus data for in-lake and tributary stations. Phosphorus is the nutrient that limits the algae's ability to grow and reproduce. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

The total phosphorus concentration was *elevated* (39, 24 and 18 ug/L) in **Pine Inlet B** this year. This station has had a history of *elevated* and *fluctuating* phosphorus concentrations. We recommend that your monitoring group conduct a stream survey and

rain event sampling along this tributary so that we can determine what may be causing the elevated concentrations.

For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at http://www.des.nh.gov/organization/divisions/water/wmb/vlap/categories/publications.htm, or contact the VLAP Coordinator.

The total phosphorus concentration in the **Pine Inlet A** sample was **slightly elevated** (**23 ug/L**) on the **July** sampling event. The turbidity of the sample was also **elevated** (**3.87 NTUs**), which suggests that the stream bottom may have been disturbed while sampling or that erosion is occurring in the watershed.

When the stream bottom is disturbed, phosphorus rich sediment is released into the water column. When collecting tributary samples, please be sure to sample where the tributary is flowing and where the stream is deep enough to collect a "clean" sample free from organic debris and sediment.

If you suspect that erosion is occurring in this area of the watershed, we recommend that your monitoring group conduct a stream survey and rain event sampling along this tributary. This additional sampling may allow us to determine what is causing the *elevated* levels of turbidity and phosphorus.

For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at http://www.des.nh.gov/organization/divisions/water/wmb/vlap/categories/publications.htm, or contact the VLAP Coordinator.

Table 9 and Table 10: Dissolved Oxygen and Temperature Data
Table 9 in Appendix B shows the dissolved oxygen/temperature
profile(s) collected during 2009. Table 10 in Appendix B shows the
historical and current year dissolved oxygen concentration in the
hypolimnion (lower layer). The presence of sufficient amounts of
dissolved oxygen in the water column is vital to fish and amphibians
and bottom-dwelling organisms. Please refer to the "Chemical
Monitoring Parameters" section of this report for a more detailed
explanation.

The dissolved oxygen concentration was greater than **100 percent** saturation at **five** and **six** meters at the deep spot on the **July** sampling event. Wave action from wind can also dissolve

atmospheric oxygen into the upper layers of the water column. Layers of algae can also increase the dissolved oxygen in the water column, since oxygen is a by-product of photosynthesis. Considering that the depth of sunlight penetration into the water column was approximately **4.8 meters** on this sampling event, as shown by the Secchi disk transparency depth, and that the metalimnion, the layer of rapid decrease in water temperature and increase in water density where algae typically congregate, was located between approximately **four** and **seven** meters, we suspect that an abundance of algae in the metalimnion caused the oxygen super-saturation.

The dissolved oxygen concentration was *lower in the hypolimnion* (*lower layer*) than in the epilimnion (upper layer) at the deep spot on the **July** sampling event. As stratified lakes age, and as the summer progresses, oxygen typically becomes **depleted** in the hypolimnion by bacterial decomposition. Specifically, the reduction of hypolimnetic oxygen is primarily a result of biological organisms using oxygen to break down organic matter, both in the water column and particularly at the bottom of the lake or pond where the water meets the sediment. When the hypolimnetic oxygen concentration is depleted to less than 1 mg/L, the phosphorus that is normally bound up in the sediment may be re-released into the water column, a process referred to as **internal phosphorus loading**.

Lower hypolimnetic oxygen levels are a sign of the lake's **aging** health. This year the DES biologist collected the dissolved oxygen profile in **July**. We recommend that the annual biologist visit for the **2010** sampling year be scheduled during **June** so that we can determine if oxygen is depleted in the hypolimnion **earlier** in the sampling year.

> Table 11: Turbidity

Table 11 in Appendix B lists the current year and historical data for in-lake and tributary turbidity. Turbidity in the water is caused by suspended matter, such as clay, silt, and algae. Water clarity is strongly influenced by turbidity. Please refer to the "Other Monitoring Parameters" section of this report for a more detailed explanation.

As discussed previously, the hypolimnetic (lower layer) turbidity was *slightly elevated* (1.42 and 2.38 NTUs) on the July and August sampling events. In addition, the hypolimnetic turbidity has been elevated on many sampling events during previous sampling years. This suggests that the lake bottom may have been disturbed by the anchor or by the Kemmerer Bottle while sampling and/or that the lake bottom is covered by an easily disturbed, thick organic layer of sediment. When the lake bottom is disturbed, phosphorus rich sediment is released into the water column. When collecting the

hypolimnion sample, make sure that there is no sediment in the Kemmerer Bottle before filling the sample bottles.

The turbidity in the **Pine Inlet A** sample was *elevated* (3.87 NTUs) on the **July** sampling event, which suggests that the stream bottom may have been disturbed while sampling or that erosion is occurring in this area of the watershed. When the stream bottom is disturbed, sediment, which typically contains attached phosphorus, is released into the water column. When collecting tributary samples please sample where there's sufficient stream flow and depth to collect a "clean" sample free from debris and sediment.

The turbidity in the **Pine Inlet B** samples was **slightly elevated** (1.94, 1.21 and 1.15 NTUs) on the **July, August and September** sampling events. The record summer rainfall likely washed unstable sediments into the tributary from the nearby watershed.

If you suspect erosion in the watershed, we recommend conducting a stream survey to identify sediment erosion. We also recommend that your monitoring group conduct rain event sampling along this tributary. This additional sampling may allow us to determine what is causing the *elevated* levels of turbidity.

For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at http://www.des.nh.gov/organization/divisions/water/wmb/vlap/categories/publications.htm, or contact the VLAP Coordinator.

> Table 12: Bacteria (E.coli)

Table 12 in Appendix B lists the current year and historical data for bacteria (E.coli) testing. E. coli is a normal bacterium found in the large intestine of humans and other warm-blooded animals. E.coli is used as an indicator organism because it is easily cultured and its presence in the water, in defined amounts, indicates that sewage may be present. If sewage is present in the water, potentially harmful disease-causing organisms may also be present.

The *E. coli* concentration was **low** at the **Outlet, Pilgrim Pines Beach, Pine Inlet B, and the Public Beach** sampled on the **July, August and September** sampling events. Specifically, each result was **70 counts or less**, which is *much less than* the state standard of 406 counts per 100 mL for recreational surface waters that are not designated public beaches and *less than* the 88 counts per 100 mL for surface waters that are designated public beaches.

The **Pine Inlet A** *E. coli* concentration was **elevated** on the **July** sampling event. The concentration of **510** counts per 100 mL **was greater than** the state standard of 406 counts per 100 mL for recreational waters that are not designated public beaches.

Field observations note that a beaver dam had burst upstream of Pine Inlet. Beaver activity often results in spikes in *E. coli* concentrations. We suspect that the compromised beaver dam caused the elevated *E. coli* concentrations. *E. coli* concentrations were low on the September sampling event.

> Table 13: Chloride

Table 13 in Appendix B lists the current year and the historical data for chloride sampling. The chloride ion (Cl-) is found naturally in some surfacewaters and groundwaters and in high concentrations in seawater. Research has shown that elevated chloride levels can be toxic to freshwater aquatic life. In order to protect freshwater aquatic life in New Hampshire, the state has adopted **acute and chronic** chloride criteria of **860 and 230 mg/L** respectively. The chloride content in New Hampshire lakes is naturally low, generally less than 2 mg/L in surface waters located in remote areas away from habitation. Higher values are generally associated with salted highways and, to a lesser extent, with septic inputs. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

Chloride sampling was **not** conducted during **2009**.

Table 14: Current Year Biological and Chemical Raw Data
Table 14 in Appendix B lists the most current sampling year results.
Since the maximum, minimum, and annual mean values for each parameter are not shown on this table, this table displays the current year "raw," meaning unprocessed, data. The results are sorted by station, depth, and then parameter.

> Table 15: Station Table

As of the spring of 2004, all historical and current year VLAP data are included in the DES Environmental Monitoring Database (EMD). To facilitate the transfer of VLAP data into the EMD, a new station identification system had to be developed. While volunteer monitoring groups can still use the sampling station names that they have used in the past and are most familiar with, an EMD station name also exists for each VLAP sampling location. Table 15 in Appendix B identifies what EMD station name corresponds to the

station names you have used in the past and will continue to use in the future.

DATA QUALITY ASSURANCE AND CONTROL

Annual Assessment Audit:

During the annual visit to your lake, the biologist conducted a sampling procedures assessment audit for your monitoring group. Specifically, the biologist observed the performance of your monitoring group and completed an assessment audit sheet to document the volunteer monitors' ability to follow the proper field sampling procedures, as outlined in the VLAP Monitor's Field Manual. This assessment is used to identify any aspects of sample collection in which volunteer monitors failed to follow proper procedures, and also provides an opportunity for the biologist to retrain the volunteer monitors as necessary. This will ultimately ensure samples that the volunteer monitors collect are truly representative of actual lake and tributary conditions.

Overall, your monitoring group did an *excellent* job collecting samples on the annual biologist visit this year! Specifically, the members of your monitoring group followed the proper field sampling procedures and there was no need for the biologist to provide additional training. Keep up the good work!

Sample Receipt Checklist:

Each time your monitoring group dropped off samples at the laboratory this summer, the laboratory staff completed a sample receipt checklist to assess and document if your group followed proper sampling techniques when collecting the samples. The purpose of the sample receipt checklist is to minimize, and hopefully eliminate, improper sampling techniques.

Overall, the sample receipt checklist showed that your monitoring group did an *excellent* job when collecting samples and submitting them to the laboratory this year! Specifically, the members of your monitoring group followed the proper field sampling procedures and there was no need for the laboratory staff to contact your group with questions, and no samples were rejected for analysis.

USEFUL RESOURCES

Acid Deposition Impacting New Hampshire's Ecosystems, DES fact sheet ARD-32, (603) 271-2975 or

www.des.nh.gov/organization/commissioner/pip/factsheets/ard/docum ents/ard-32.pdf.

Best Management Practices to Control Nonpoint Source Pollution: A Guide for Citizens and Town Officials, DES Booklet WD-03-42, (603) 271-2975 or

www.des.nh.gov/organization/commissioner/pip/publications/wd/documents/wd-03-42.pdf.

Erosion Control for Construction in the Protected Shoreland Buffer Zone, DES fact sheet WD-SP-1, (603) 271-2975 or

http://des.nh.gov/organization/commissioner/pip/factsheets/sp/documents/sp-1.pdf

Lake Protection Tips: Some Do's and Don'ts for Maintaining Healthy Lakes, DES fact sheet WD-BB-9, (603) 271-2975 or

www.des.nh.gov/organization/commissioner/pip/factsheets/bb/docume nts/bb-9.pdf.

NH Stormwater Management Manual Volume 1: Stormwater and Antidegradation, DES fact sheet WD-08-20A, (603) 271-2975 or http://des.nh.gov/organization/commissioner/pip/publications/wd/doc uments/wd-08-20a.pdf

NH Stormwater Management Manual Volume 2: Post-Construction Best Management Practices Selection and Design, DES fact sheet WD-08-20B, (603) 271-2975 or

http://des.nh.gov/organization/commissioner/pip/publications/wd/doc uments/wd-08-20b.pdf

NH Stormwater Management Manual Volume 3: Erosion and Sediment Controls During Construction, DES fact sheet WD-08-20C, (603) 271-2975 or

http://des.nh.gov/organization/commissioner/pip/publications/wd/doc uments/wd-08-20c.pdf

Road Salt and Water Quality, DES fact sheet WD-WMB-4, (603) 271-2975 or

www.des.nh.gov/organization/commissioner/pip/factsheets/wmb/documents/wmb-4.pdf.

Vegetation Maintenance Within the Protected Shoreland, DES fact sheet WD-SP-5, (603) 271-2975 or

http://des.nh.gov/organization/commissioner/pip/factsheets/sp/documents/sp-5.pdf